Dosage-Dependent Proteome Response of Shewanella oneidensis MR-1 to Chromate Insult

©EM \$\overline{\pi}\ \overline{\pi}\ \overl

Melissa R. Thompson^{1,2}, Nathan C. VerBerkmoes², Karuna Chourey³, Steven D. Brown³, Robert L. Hettich², and Dorothea K. Thompson⁴

Graduate School of Genome Science and Technology, UT-ORNL, Knoxville, TN, ²Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN,

¹Graduate School of Genome Science and Technology, UT-ORNL, Knoxville, TN, ²Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, ³Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, ⁴Department of Biological Sciences, Purdue University, West Lafayette, IN

OVFRVIFW

- Shewanella oneidensis MR-1 (Figure 1) is a gramnegative, facultatively anaerobic bacterium originally isolated from a freshwater lake. (Science 240, 1988, 1319-1320)
- S. oneidensis MR-1 has the ability to reduce toxic metal ions [e.g., Cr(VI) and U(VI)] found in industrial and governmental waste sites.
- Cells were grown and exposed to three different metal concentrations in order to probe the dosage response of *S. oneidensis* MR-1 to Cr(VI) in the form of chromate.
- Protein fractions were digested with trypsin and analyzed with a multidimensional HPLC-NanoESI-MS/MS protocol.
- The goal of this work is to identify protein components of pathways/mechanisms responsible for both detoxification and reduction of chromate.

Figure 1: Atomic force microscopic image of *S. oneidensis* MR-1 grown under physiologically optimal conditions. The arrow points to the flagellum with other unknown appendages viewable around the cell. (Micrograph courtesy of K. Chourey)

EXPERIMENTAL

- S. oneidensis MR-1 dosage response cells were grown under aerobic conditions with the addition of 0, 0.3, 0.5, or 1.0 mM K₂CrO₂ when cells reached mid-exponential phase. The cells were then allowed to grow for an additional 30 minutes in the presence of chromate.
- Cells were lysed using sonication and protein fractions were separated into crude and membrane fractions by centrifuging the samples at 100,000xg for 60 minutes. Following lysis, a trypsin digestion using a standard protocol was employed.
- Analysis was carried out by a 24 hour multidimensional HPLC-MS/MS protocol. (See Figure 2.)
 - Separation was accomplished by online 2-D chromatography using strong cation exchange as the first dimension and C18 reverse phase as the second dimension of separation.
 - A LTQ linear trapping quadrupole (Thermo Finnigan) and Ultimate HPLC (LC Packings) were operated in the data-dependent mode for dosage response samples.
- Peptide identification was completed by the search engine SEQUEST with a two unique peptide cut-off (X-corr values 1.8(+1), 2.5(+2) and 3.5(+3)).
- Semi-quantitation: Proteins were considered differentially expressed (up- or down-regulated) with a difference in at least two of the following categories: 5 or more peptides, a difference of 40% sequence coverage, or 2X more spectra identified between treated and control samples.

RESULTS

ı				
	Condition	Proteins Identified 1 pep	Proteins Identified 2 pep#	Average Sequence Coverage ^s
1	Control	2593	1975	35.6%
	0.3 mM	2419	1864	32.8%
	0.5 mM	2393	1813	37.0%
	1.0 mM	2630	2085	37.5%
CAN DECEMBER	Total non- redundant		2445	

'identified with at least 1 peptide per protein #identified with at least 2 peptides per protein \$average sequence coverage at the 2-peptide level

Functional Category Assignments

- ◆ Up-Regulated Proteins under Chromate Dosage Conditions
 - The dominant functional category was Transport and Binding Proteins (17) (9 proteins out of 16) for up-regulated proteins found under all dosage conditions. (See Figure 3.)
 - At the 1.0 mM Chromate level, 14 proteins up-regulated are annotated under this category.
 For the 0.3 mM and 0.5 mM chromate exposed samples; 15 out of 42 and 18 out of 39 proteins were up-regulated and annotated as transport and binding proteins.
 - Other dominant categories were Amino Acid Biosynthesis (1) and Energy Metabolism (7) at the 1.0 mM level with 7 and 12 proteins, respectively.
 - These categories contained between 1 and 3 proteins each for the 0.3 mM and 0.5 mM samples respectively; indicating a dosage response with respect to the 1.0 mM sample for these categories.

Locus	Control		0.3mM Chromate		0.5mM Chromate		1.0mM Chromate		Functional Category	Description				
Locus	seq cov.	peptide	spectra	seq cov.	peptide	spectra	seq cov.	peptide	spectra	seq cov.	peptide	spectra	Number	Description
801776	40.0%	30.5	35.5	8.3%	3	3	23.8%	9	11	9.0%	4	6	3	outer membrane protein precursor MtrB (mtrB)
804053	38.4%	18	25.5	4.4%	2	2	15.5%	7.5	10	9.3%	6	19.5	4	methyl-accepting chemotaxis protein
800398	28.5%	13	18.5	3.7%	1.5	1.5	2.6%	1	1	6.1%	2	2	7	fumarate reductase flavoprotein subunit (frdA)
SO0847	47.4%	8	11	0.0%	0	0	8.6%	1	1	0.0%	0	0	7	iron-sulfur cluster-binding protein NapG (napG)
SO0848	66.4%	68	186.5	42.6%	35.5	52	67.2%	56	107.5	41.9%	34	60.5	7	periplasmic nitrate reductase (napA)
801429	20.4%	10.5	12.5	0.0%	0	0	7.9%	3.5	3.5	3.4%	1.5	1.5	7	anaerobic dimethyl sulfoxide reductase, A subunit (dmaA-1)
804513	42.3%	42	67.5	9.6%	7.5	9.5	23.3%	19	24.5	11.7%	8	11	7	formate dehydrogenase, alpha subunit
802175	33.4%	12.5	15.5	9.4%	3	3	25.8%	11	16	16.4%	5.5	7	9	conserved hypothetical protein
802929	69.6%	31	56	38.9%	14.5	25.5	38.3%	9.5	16.5	47.8%	14.5	21.5	9	hypothetical protein
SO0696	15.8%	10	15.5	2.5%	1.5	1.5	19.6%	9	11	6.8%	3	4	11	thiol:disulfide interchange protein DsbD (dsbD)
801805	23.4%	8	8	3.2%	1	1.5	22.0%	7.5	11	3.6%	1.5	1.5	17	peptide ABC transporter, periplasmic peptide-binding protein (sapA)
803865	37.1%	13	15.5	14.6%	2.5	3	30.8%	8	11	17.9%	4	5	17	molybdenum ABC transporter, ATP-binding protein (modC)
801674	42.5%	11	15	8.7%	1.5	2	36.5%	9	16	21.9%	4	4	18	oxidoreductase, short chain dehydrogenase/reductase famili

Down-regulated Proteins Under All Dosage Conditions

- Down-Regulated Proteins Under Chromate Dosage Conditions
 - The functional category of Energy Metabolism (7) demonstrated the greatest number of down-regulated proteins identified under all dosage conditions with 5 out of 13 proteins annotated under this category.
 - After exposure to 1.0 mM chromate; 9 proteins out of 26 were down-regulated and involved in energy metabolism.
 - After exposure to 0.3 mM and 0.5 mM chromate; 15 out of 86 and 9 out of 53 proteins were down-regulated and annotated as involved in energy metabolism.
 - Other functional categories that had greater than 10 proteins down-regulated after exposure to 0.3 mM chromate were Cellular Processes (4) and hypothetical proteins (9).
 - After exposure to 0.5 mM and 1.0 mM chromate; 8 and 9 proteins annotated as hypothetical proteins (9) were identified as down-regulated, respectively.

CONCLUSIONS

- After exposure to three different concentrations of K₂CrO₄, we found:
 - A total of 2,445 proteins identified under at least one of the four growth conditions.
 128 proteins differentially expressed with respect to the control after the
 - addition of 0.3 mM chromate (42 up- and 86 down-regulated).
 - 96 proteins were differentially expressed after 0.5 mM chromate introduction (43 up- and 53 down-regulated).
- A total of 92 proteins were differentially expressed after exposure to 1.0 mM
- chromate (66 up- and 26 down-regulated).

 ♦ A total of 29 proteins were differentially expressed over all three chromate concentrations (See up- and down-regulated
- proteins tables).

 ♦ The 30-minute time point for the 1.0 mM chromate sample analyzed here is similar to our 45-minute 1.0 mM chromate.
- analyzed here is similar to our 45-minute 1.0 mM chromate shocked sample (Brown *et al*, MCP, in press).
- 60% of proteins identified as differentially expressed after 45 minutes were also at the 30-minute time point.
- ◆ A putative azoreductase (SO3585), a glyoxalase family protein (SO3586), and a hypothetical protein (SO3587) are identified only under chromate conditions (See Figure 2), and may be involved in a detoxification mechanism for chromate. Studies are underway to determine whether these proteins function in a complex and whether the putative azoreductase can reduce Cr(VI).
- ◆ SO3585 and SO3586 were found to be up-regulated at both the mRNA and
 protein level after 45 and 90 minutes of exposure to K₂CrO₄.
- In this dosage response study, at a concentration of 0.3 mM chromate, SO3585 (3 peptides) and SO3586 (3 peptides) were identified at the protein level, but were not differentially expressed.
- At the 0.5 mM chromate level, SO3585 was identified as up-regulated, however SO3586 and SO3587 were identified with 3 peptides each but not up-regulated.
- At a concentration of 1.0 mM chromate only SO3585 is up-regulated with identification of SO3586 and SO3587 by 4 peptides each.

Figure 3: Schematic view of membrane region in Gram-negative bacterium Key transport molecules are a metal-siderophore complex, TonB receptor, TonB complex (TonB, ExbB, & ExbD), and ABC transporter. These proteins are annotated under transport and binding proteins (17) in S. oneidensis MR-1 and are found up-regulated under the dosage response conditions presented here (See table of up-regulated proteins). Also shown is a putative azoreductase (AZO, HP, & Glyoxalase) complex of the inner membrane.

ACKNOWLEDGMENTS

- Research support was provided by the U.S. Department of Energy Office of Science Biological and Environmental Research programs.
- M. Thompson acknowledges support from the ORNL-UTK Genome Science and Technology Graduate School.
- Oak Ridge National Laboratory is managed and operated by the University of Tennessee-Battelle, L.L.C., under contract DE-AC05-000R22725 with the U.S. Department of Energy.